Kamis, 05 Juli 2018

TEORI ANTRIAN


 Konsep Teori Antrian
        Antrian adalah suatu kejadian yang biasa dalam kehidupan sehari–hari. Menunggu di depan loket untuk mendapatkan tiket kereta api atau tiket bioskop, pada pintu jalan tol, pada bank, pada kasir supermarket, dan situasi–situasi yang lain merupakan kejadian yang sering ditemui. Studi tentang antrian bukan merupakan hal yang baru.
Dalam dunia nyata kita tidak suka menunggu, maka tak heran bila kita punya pendapat bahwa menunggu adalah pekerjaan yang paling menyebalkan.  Di bawah ini diberikan contoh  beberapa situasi dimana antrian sangat penting.
1.            Contoh Supermarket. Berapa lama pelanggan harus menunggu di kasir ? apa yang terjadi dengan waktu tunggu selama puncak kesibukan ? apakah jumlah kasir cukup ?
2.            Contoh Sistem Produksi Sebuah mesin menghasilkan jenis produk yang berbeda. Berapa waktu pasti dari suatu pesanan? Apa yang mengurangi waktu pasti jika kita memiliki sebuah mesin ekstra? Haruskah kita membuat prioritas dari pesanan?
3.            Contoh Kantor Pos. Dalam suatu kantor pos ada konter-konter khusus didalamnya seperti stempel, packaging, ternsaksi keuangan dll. Apakah konternya sudah cukup? Bisakah Antrian terpisah atau antrian umum di depan konter dengan spesialisasi yang sama?
4.            Contoh Komunikasi Data Di dalam paket jaringan komunikasi standar komputer yang disebut sel ditransmisikan di dalam link dari satu switch ke yang lainnya. Pada setiap switch sel yang masuk dapat dibuffer ketika permintaan yang datang melebihi kapasitas link. Ketika buffer penuh cel yang masuk akan hilang. Apa yang menunda sel didalam switch? Pecahan sel yang mana yang akan hilang? Berapa ukuran buffer yang baik?
5.            Contoh Tempat Parkir Mereka akan mendirikan suatu area parkir baru di depan suatu supermarket. Seberapa besar seharusnya ?
Konsep Teori Antrian

        Antrian yang sangat panjang dan terlalu lama untuk memperoleh giliran pelayanan sangatlah menjengkelkan. Rata – rata lamanya waktu menunggu (waiting time) sangat tergantung kepada rata – rata tingkat kecepatan pelayanan (rate of services). Teori tentang antrian diketemukan dan dikembangkan oleh A. K. Erlang, seorang insinyur dari Denmark yang bekerja pada perusahaan telepon di Kopenhagen pada tahun 1910. Erlang melakukan eksperimen tentang fluktuasi permintaan fasilitas telepon yang berhubungan dengan automatic dialing equipment, yaitu peralatan penyambungan telepon secara otomatis.

        Dalam waktu – waktu yang sibuk operator sangat kewalahan untuk melayani para penelepon secepatnya, sehingga para penelepon harus antri menunggu giliran, mungkin cukup lama. Persoalan aslinya Erlang hanya memperlakukan perhitungan keterlambatan (delay) dari seorang operator, kemudian pada tahun 1917 penelitian dilanjutkan untuk menghitung kesibukan beberapa operator. Dalam periode ini Erlang menerbitkan bukunya yang terkenal berjudul Solution of some problems in the theory of probabilities of significance in Automatic Telephone Exhange. Baru setelah perang dunia kedua, hasil penelitian Erlang diperluas penggunaannya antara lain dalam teori antrian (Supranto, 1987).

        Menurut Siagian (1987), antrian ialah suatu garis tunggu dari nasabah (satuan) yang memerlukan layanan dari satu atau lebih pelayan (fasilitas layanan). Pada umumnya, sistem antrian dapat diklasifikasikan menjadi system yang berbeda – beda di mana teori antrian dan simulasi sering diterapkan secara luas. Klasifikasi menurut Hillier dan Lieberman adalah sebagai berikut
1. Sistem pelayanan komersial
2. Sistem pelayanan bisnis – industri
3. Sistem pelayanan transportasi
4. Sistem pelayanan social

        Sistem pelayanan komersial merupakan aplikasi yang sangat luas dari model – model antrian, seperti restoran, kafetaria, toko, salon, butik, supermarket, dan sebagainya. Sistem pelayanan bisnis – industri mencakup lini produksi, sistem material – handling, sistem pergudangan, dan sistem – sistem informasi komputer. Sistem pelayanan sosial merupakan sistem – sistem pelayanan yang dikelola oleh kantor – kantor dan jawatan – jawatan lokal maupun nasional, seperti kantor registrasi SIM dan STNK, kantor pos, rumah sakit, puskesmas, dan lain – lain (Subagyo, 2000).

Sistem Antrian

Ada tiga komponen dalam sistim antrian yaitu :
1. Populasi dan cara kedatangan pelanggan datang ke dalam sistem
2. Sistem pelayanan
3. kondisi pelanggan saat keluar sistem




1. Populasi dan Cara Kedatangan Pelanggan

a) Populasi
        Populasi yang akan Dilayani (calling population) Setiap masalah antrian melibatkan kedatangan, misalnya orang, mobil, panggilan telepon untuk dilayani, dan lain – lain. Unsur ini sering dinamakan proses input. Proses input meliputi sumber kedatangan atau biasa dinamakan calling population, dan cara terjadinya kedatangan yang umumnya merupakan variabel acak. Menurut Levin, dkk (2002), variable acak adalah suatu variabel yang nilainya bisa berapa saja sebagai hasil dari percobaan acak. Variabel acak dapat berupa diskrit atau kontinu. Bila variabel acak hanya dimungkinkan memiliki beberapa nilai saja, maka ia merupakan variabel acak diskrit. Sebaliknya bila nilainya dimungkinkan bervariasi pada rentang tertentu, ia dikenal sebagai variabel acak kontinu.

        Karakteristik dari populasi yang akan dilayani (calling population) dapat dilihat menurut ukurannya, pola kedatangan, serta perilaku dari populasi yang akan dilayani. Menurut ukurannya, populasi yang akan dilayani bisa terbatas (finite) bisa juga tidak terbatas (infinite). Sebagai contoh jumlah mahasiswa yang antri untuk registrasi di sebuah perguruan tinggi sudah diketahui jumlahnya (finite), sedangkan jumlah nasabah bank yang antri untuk setor, menarik tabungan, maupun membuka rekening baru, bisa tak terbatas (infinte).

b) Distribusi Kedatangan
        Secara umum, formula garis tunggu antrian memerlukan informasi tingkat kedatangan unit per periode waktu (arrival rate). distribusi kedatangan bisa teratur - tetap dalam satu periode. Artinya kedatangan unit/ pelanggan dalam antrian dengan unit/ pelanggan berikutnya memiliki periode waktu yang sama. Kedatangan yang seperti ini biasanya hanya ada di sistem produksi dimana antrian dikendalikan oleh mesin.  Kedatangan yang teratur sering kita jumpai pada proses pembuatan/ pengemasan produk yang sudah distandardisasi. Pada proses semacam ini, kedatangan produk untuk diproses pada bagian selanjutnya biasanya sudah ditentukan waktunya, misalnya setiap 30 detik.

        Pada banyak kasus dalam praktek, kedatangan unit/ pelanggan dalam antrian dengan unit/ pelanggan berikutnya bersifat variabel atau acak (random).Kedatangan yang sifatnya acak (random) banyak kita jumpai misalnya kedatangan nasabah di bank. Pola kedatangan yang sifatnya acak dapat digambarkan dengan distribusi statistik dan dapat ditentukan dua cara yaitu
             Dengan cara menganalisa kedatangan per satuan waktu untuk melihat apakah waktu kedatangan unit/ pelanggan dalam antrian mengikuti pola distribusi statistik tertentu. Biasanya kita mengasumsikan bahwa waktu kedatangan unit/ pelanggan dalam antrian dengan unit/ pelanggan berikutnya berdistribusi eksponensial.
             Dengan cara menetapkan lama waktu (T) dan mencoba menentukan berapa banyak unit/ pelanggan yang datang ke dalam sistem dalam kurun waktu T. Secara spesifik biasanya diasumsikan bahwa jumlah kedatangan per satuan waktu mengikuti pola distribusi Poisson.
Contoh : Kedatangan digambarkan dalam jumlah satu waktu, dan bila kedatangan terjadi secara acak, informasi yang penting adalah Probabilitas n kedatangan dalam periode waktu tertentu, dimana n = 0,1,2,. Jika kedatangan diasumsikan terjadi dengan kecepatan rata-rata yang konstan dan bebas satu sama lain disebut distribusi probabilitas Poisson Ahli matematika dan fisika, Simeon Poisson (1781 – 1840), menemukan sejumlah aplikasi manajerial, seperti kedatangan pasien di RS, sambungan telepon melalui central switching system, kedatangan kendaraan di pintu toll, dll. Semua kedatangan tersebut digambarkan dengan variabel acak yang terputus-putus dan nonnegative integer (0, 1, 2, 3, 4, 5, dst). Selama 10 menit mobil yang antri di pintu toll bisa 3, 5, 8, dst.
Ciri distribusi poisson:

i). rata-rata jumlah kedatangan setiap interval bisa diestimasi dari data sebelumnya
ii). bila interval waktu diperkecil misalnya dari 10 menit menjadi 5 menit, maka pernyataan ini benar
             probabilita bahwa seorang pasien datang merupakan angka yang sangat kecil dan konstan untuk setiap interval
             probabilita bahwa 2 atau lebih pasien akan datang dalam waktu interval sangat kecil sehingga probabilita untuk 2 atau lebih dikatakan nol (0).
             Jumlah pasien yang yang datang pada interval waktu bersifat independent
             Jumlah pasien yang datang pada satu interval tidak tergantung pada interval yang lain.

Probabilitas n kedatangan dalam waktu T ditentukan dengan rumus




Jika kedatangan mengikuti Distribusi Poisson dapat ditunjukkan secara matematis bahwa waktu antar kedatangan akan terdistribusi sesuai dengan distribusi eksponensial




        Suatu faktor yang mempengaruhi penilaian distribusi kedatangan adalah ukuran populasi panggilan . Contoh : jika seorang tukang reparasi sedang memperbaiki enam buah mesin, populasi panggilan dibatasi sampai dengan enam buah mesin. Dalam hal ini tidak mungkin bahwa kedatangan mengikuti distribusi Poisson sebab tingkat kecepatan kerusakan tidak konstan. Jika lima buah mesin telah rusak, tingkat kedatangan lebih rendah daripada bila seluruh mesin dalam keadaan operasi.

        Populasi yang akan dilayani mempunyai perilaku yang berbeda-beda dalam membentuk antrian. Ada tiga jenis perilaku: reneging, balking, dan jockeying. Reneging menggambarkan situasi dimana seseorang masuk dalam antrian, namun belum memperoleh pelayanan, kemudian meninggalkan antrian tersebut. Balking menggambarkan orang yang tidak masuk dalam antrian dan langsung meninggalkan tempat antrian. Jockeying menggambarkan orang yang pindah-pindah antrian.

c) Pola Kedatangan
        Kedatangan unit/ pelanggan dalam sistem antrian, untuk beberapa kasus, dapat dikendalikan. Misalnya kedatangan dikendalikan dengan cara memberikan potongan pada hari-hari tertentu yang sepi dengan maksud menggiring pelanggan untuk datang pada jam sepi, memberikan harga tinggi pada sesi-sesi padat agar pelanggan tergiring datang pada hari lain yang lebih murah. Namun demikian, dalam beberapa kasus yang lain, kedatangan unit/ pelanggan dalam antrian tidak dapat dikendalikan misalnya permintaan bantuan imergensi di rumah sakit, atau pemadam kebakaran atau kantor polisi.

d) Jumlah Unit/ Pelanggan yang Datang
        Kedatangan tunggal atau dengan kata lain satu kali kedatangan bisa saja hanya terdiri dari satu uni atau satu pelanggan. Namun demikian bisa saja dalam satu kali kedatangan terdiri dari banyak unit yang disebut batch arrivals, misalnya kedatangan undangan di lima acara pesta di sebuah restoran.

e) Tingkat Kesabaran
Tingkat kesabaran pelanggan dalam antrian dikelompokkan menjadi dua, yakni
             Kedatangan yang sabar. Yaitu seseorang yang bersedia menunggu hingga dilayani terlepas apakah mereka menunjukkan perilaku tidak sabar seperti menggerutu atau mengomel tetapi tetap menunggu dalam antrian. 
             Kedatangan yang tidak sabar. Kedatangan yang tidak sabar dikelompokkan menjadi dua kategori. Kategori yang pertama adalah orang yang datang, melihat-lihat fasilitas layanan dan panjang antrian, lalu memutuskan meninggalkan sistem. Kategori yang kedua adalah orang yang datang, melihat fasilitas layanan, bergabung dalam antrian dan untuk beberapa lama kemudian meninggalkan sistem.

2. Sistem Pelayanan Antrian

    Sistem Pelayanan Antrian meliputi beberapa hal yakni garis antrian/ baris tunggu dan ketersediaan fasilitas.

a) Garis antrian/ baris tunggu.
    Faktor-faktor yang terkait dengan garis antrian meliputi panjang antrian, jumlah baris antrian dan disiplin antrian.
             Panjang Kapasitas Antrian
Dalam pengertian praktis, panjang kapasitas antrian dapat dikelompokkan menjadu dua yakni 1) panjang kapasitas antrian yang potensial tak terbatas, misalnya panjang antrian di jembatan penyeberangan, atau antrian membeli tiket bioskop. 2) panjang kapasitas antrian yang terbatas  baik karena ketentuan peraturan atau karena keterbatasan karakteristik ruang fisik, misalnya tempat parkir.
             Jumlah Antrian.
Jumlah antrian dalam sistem antrian dikelompokkan menjadi dua yakni antrian tunggal. Artinya hanya ada satu fasilitas layanan untuk melayani antrian. 2) Antrian berganda/ multi. Artinya ada beberapa fasilitas layanan di depan baris antrian.
             Disiplin Antrian
Disiplin antrian dikelompokkan menjadi dua, yaitu preemptive dan non preemptive. Disiplin preemptive menggambarkan situasi dimana pelayan sedang melayani seseorang, kemudian beralih melayani orang yang diprioritaskan meskipun belum selesai melayani orang sebelumnya. Sementara disiplin non preemptive menggambarkan situasi dimana pelayan akan menyelesaikan pelayanannya baru kemudian beralih melayani orang yang diprioritaskan. Sedangkan disiplin first come first serve menggambarkan bahwa orang yang lebih dahulu datang akan dilayani terlebih dahulu. Dalam kenyataannya sering dijumpai kombinasi dari tersebut. Yaitu prioritas dan first come first serve. Sebagai contoh, para pembeli yang akan melakukan pembayaran di kasir untuk pembelian kurang dari sepuluh jenis barang (dengan keranjang) di super market disediakan counter tersendiri.

Disiplin antri adalah aturan keputusan yang menjelaskan cara melayani pengantri. Menurut Siagian (1987), ada 5 bentuk disiplin pelayanan yang biasa digunakan, yaitu :
1.            FirstCome FirstServed (FCFS) atau FirstIn FirstOut (FIFO) artinya, lebih dulu datang (sampai), lebih dulu dilayani (keluar). Misalnya, antrian pada loket pembelian tiket bioskop.
2.            LastCome FirstServed (LCFS) atau LastIn FirstOut (LIFO) artinya, yang tiba terakhir yang lebih dulu keluar. Misalnya, sistem antrian dalam elevator untuk lantai yang sama.
3.            Service In Random Order (SIRO) artinya, panggilan didasarkan pada
4.            peluang secara random, tidak soal siapa yang lebih dulu tiba.
5.            Priority Service (PS) artinya, prioritas pelayanan diberikan kepada pelanggan yang mempunyai prioritas lebih tinggi dibandingkan dengan pelanggan yang mempunyai prioritas lebih rendah, meskipun yang terakhir ini kemungkinan sudah lebih dahulu tiba dalam garis tunggu. Kejadian seperti ini kemungkinan disebabkan oleh beberapa hal, misalnya seseorang yang dalam keadaan penyakit lebih berat dibanding dengan orang lain dalam suatu tempat praktek dokter.
        Dalam hal di atas telah dinyatakan bahwa entitas yang berada dalam garis tunggu tetap tinggal di sana sampai dilayani. Hal ini bisa saja tidak terjadi. Misalnya, seorang pembeli bisa menjadi tidak sabar menunggu antrian dan meninggalkan antrian. Untuk entitas yang meninggalkan antrian sebelum dilayani digunakan istilah pengingkaran (reneging). Pengingkaran dapat bergantung pada panjang garis tunggu atau lama waktu tunggu. Istilah penolakan (balking) dipakai untuk menjelaskan entitas yang menolak untuk bergabung dalam garis tunggu (Setiawan, 1991).
             Struktur Antrian
Dalam mengelompokkan model-model antrian yang berbeda-beda, akan digunakan suatu notasi yang disebut Kendall’s Notation. Notasi ini sering dipergunakan karena beberapa alasan. Pertama, karena notasi tersebut merupakan alat yang efisien untuk mengidentifikasi tidak hanya model-model antrian, tetapi juga asumsi-asumsi yang harus dipenuhi. Kedua, hampir semua buku yang membahas teori antrian menggunakan notasi ini.

Bentuk Model Umum :
1/ 2/ 3/ 4
1 = Tingkat kedatangan
2 = Tingkat Pelayanan
3 = Jumlah fasilitas pelayanan
4 = Besarnya populasi

Notasi yang sering dipakai adalah :
Singkatan    Penjelasan
M        Tingkat kedatangan dan/atau pelayanan Poisson
D        Tingkat kedatangan dan/atau pelayanan Deterministik (diketahui konstan)
K        Distribusi Erlang waktu antar kedatangan atau pelayanan
S        Jumlah fasilitas pelayanan
I        Sumber populasi atau kepanjangan antrian tak-terbatas (infinite)
F        Sumber populasi atau kepanjangan antrian terbatas (finite)

Tanda pertama notasi selalu menunjukkan distribusi tingkat kedatangan. Dalam hal ini, M menunjukkan tingkat kedatangan mengikuti distribusi probabilitas Poisson. Tanda kedua menunjukkan distribusi tingkat pelayanan. Tanda ketiga menunjukkan jumlah fasilitas pelayanan dalam sistem. Tanda keempat dan kelima ditambahkan untuk menunjukkan apakah sumber populasi dan kepanjangan antrian adalah tak-terbatas (I) atau terbatas (F).

Ada 4 model struktur antrian dasar yang umum terjadi dalam seluruh sistem antrian :
1. Single Channel – Single Phase
Single Channel berarti hanya ada satu jalur yang memasuki system pelayanan atau ada satu fasilitas pelayanan. Single Phase berarti hanya ada satu pelayanan.






2. Single Channel – Multi Phase
Istilah Multi Phase menunjukkan ada dua atau lebih pelayanan yang dilaksanakan secara berurutan (dalam phasephase). Sebagai contoh : pencucian mobil.




3. Multi Channel – Single Phase
Sistem Multi Channel – Single Phase terjadi kapan saja di mana ada dua atau lebih fasilitas pelayanan dialiri oleh antrian tunggal, sebagai contoh model ini adalah antrian pada teller sebuah bank.

 



4. Multi Channel – Multi Phase
Sistem Multi Channel – Multi Phase Sebagai contoh, herregistrasi para mahasiswa di universitas, pelayanan kepada pasien di rumah sakit mulai dari pendaftaran, diagnosa, penyembuhan sampai pembayaran. Setiap sistem – sistem ini mempunyai beberapa fasilitas pelayanan pada setiap tahapnya (Subagyo, 2000).



b) Ketersediaan Pelayanan

        Ada 3 aspek yang harus diperhatikan dalam mekanisme pelayanan, yaitu :
             Tersedianya pelayanan
Mekanisme pelayanan tidak selalu tersedia untuk setiap saat. Misalnya dalam pertunjukan bioskop, loket penjualan karcis masuk hanya dibuka pada waktu tertentu antara satu pertunjukan dengan pertunjukan berikutnya. Sehingga pada saat loket ditutup, mekanisme pelayanan terhenti dan petugas pelayanan (pelayan) istirahat.
             Kapasitas pelayanan
Kapasitas dari mekanisme pelayanan diukur berdasarkan jumlah langganan yang dapat dilayani secara bersama – sama. Kapasitas pelayanan tidak selalu sama untuk setiap saat; ada yang tetap, tapi ada juga yang berubah – ubah. Karena itu, fasilitas pelayan atau mekanisme pelayanan dapat terdiri dari satu atau lebih pelayan, atau satu atau lebih fasilitas pelayanan. Tiap – tiap fasilitas pelayanan kadang – kadang disebut sebagai saluran (channel) (Schroeder, 1997). Contohnya, jalan tol dapat memiliki beberapa pintu tol. Mekanisme pelayanan dapat hanya terdiri dari satu pelayan dalam satu fasilitas pelayanan yang ditemui pada loket seperti pada penjualan tiket di gedung bioskop.Fasilitas yang mempunyai satu saluran disebut saluran tunggal atau sistem pelayanan tunggal dan fasilitas yang mempunyai lebih dari satu saluran disebut saluran ganda atau pelayanan ganda.
             Karakteristik Waktu Pelayanan/ Lamanya pelayanan
Lamanya pelayanan adalah waktu yang dibutuhkan untuk melayani seorang langganan atau satu – satuan. Ini harus dinyatakan secara pasti. Oleh karena itu, waktu pelayanan boleh tetap dari waktu ke waktu untuk semua langganan atau boleh juga berupa variabel acak. Umumnya dan untuk keperluan analisis, waktu pelayanan dianggap sebagai variabel acak yang terpencar secara bebas dan sama serta tidak tergantung pada waktu kedatangan (Siagian, 1987) dan diasumsikan mengikuti distribusi eksponensial.

3.  Exit
        Setelah pelanggan dilayani, ada dua kemungkinan kondisi pelanggan itu keluar sistem: 1) pelanggan mungkin kembali ke populasi sumber dan mengantri lagi, Misalnya, sebuah mesin setelah mendapat perawatan servis dan dioperasikan lagi, namun ternyata mesin tersebut rusak lagi.atau 2) pelanggan hanya kemungkinan kecil untuk mendapat pelayanan ulang. Misalnya sebuah mesin mendapat perbaikan menyeluruh atau modifikasi sehingga kemungkinan kecil mesin tersebut dalam waktu dekat untuk rusak lagi.

Contoh Soal: 

Sebuah perusahaan yang menyewakan furniture mempunyai satu gudang dengan satu mesin pengangkut yang dioperasikan oleh satu kelompok yang terdiri dari tiga orang tenaga kerja. Pemimpin perusahaan melihat pada jam-jam tertentu terjadi antrian truk tetapi di saat lain, petugas yang mengoperasikan mesin menganggur. Dari data yang telah lalu, diketahui rata-rata kedatangan 4 truk per jam, dan rata-rata pelayanan 6 truk per jam. Untuk mengatasi masalah tersebut, pimpinan perusahaan merencanakan untuk menambah kelompok tenaga kerja untuk mengoperasikan mesin. Bagaimana dampak penambahan kelompok tenaga kerja terhadap biaya total yang dikeluarkan perusahaan jika biaya sewa truk $ 20 per jam, sedang upah tenaga kerja untuk mengoperasikan mesin $6 per orang per jam. Diasumsukan jika perusahaan menggunakan dua kelompok tenaga kerja maka rata-rata pelayanan menjadi 12 truk per jam dan jika perusahaan menggunakan tiga kelompok tenaga kerja maka rata-rata pelayanan menjadi 18 truk per jam. 1 hari 8 jam kerja.

Pembahasan:

        Perkiraan prestasi dari sistem antrian dapat digambarkan dengan misalnya : rata-rata jumlah kedatangan dalam antrian, rata-rata waktu tunggu dari suatu kedatangan dan persentase waktu luang dari pelayanan. Ukuran prestasi ini dapat digunakan untuk memutuskan jumlah pelayanan yang harus diberikan, perubahan yang harus dilakukan dalam kecepatan pelayanan atau perubahan lain dalam sistem antrian. Dengan sasaran pelayanan, jumlah pelayan dapat ditentukan tanpa berpatokan pada biaya waktu tunggu. Ukuran prestasi dan parameter model antrian ditentukan dengan notasi sebagai berikut:
λ = rata-rata kecepatan kedatangan (jumlah kedatangan persatuan waktu) 1/λ = rata-rata waktu antar kedatangan
µ = rata-rata kecepatan pelayanan (jumlah satuan yang dilayani persatuan waktu bila pelayan sibuk).
1/µ = rata-rata waktu yang dibutuhkan pelayan
ρ = faktor penggunaan pelayan (proporsi waktu pelayan ketika sedang sibuk)
Pn = probabilita bahwa n satuan (kedatangan) dalam sistem
Lq = rata-rata jumlah satuan dalam antrian (rata-rata panjang antrian)
Ls = rata-rata jumlah satuan dalam sistem
Wq = rata-rata waktu tunggu dalam antrian
Ws = rata-rata waktu tunggu dalam sistem

Dalam kasus ini  antrian yang didasarkan pada asumsi berikut :

1.            Satu pelayanan dan satu tahap.
2.            Jumlah kedatangan per unit waktu digambarkan oleh Distribusi Poisson dengan λ = rata-rata kecepatan kedatangan
3.            Waktu pelayanan eksponensial dengan µ = rata-rata kecepatan pelayanan
4.            Disiplin antrian adalah first come first served (Aturan antrian pertama datang-pertama dilayani) seluruh kedatangan dalam barisan hingga dilayani,
5.            dimungkinkan panjang barisan yang tak terhingga.
6.            populasi yang dilayani tidak terbatas
7.            rata-rata kedatangan lebih kecil dari rata-rata waktu pelayanan

Dari asumsi tersebut dapat diperoleh hasil secara statistik sebagai berikut :
Pw = probabilitas fasilitas layanan sibuk atau faktor utilisasi fasilitas = λ / µ
Lq = jumlah rata-rata dalam antrian



Ls = jumlah rata-rataa di dalam sistem (yang antri dan yang sedang dilayani)



 


Wq = waktu rata-rata di dalam antrian


 
Ws = waktu rata-rata di dalam sistem


Jumlah rata-rata dalam antrian
1 kelompok kerja


2 kelompok kerja

 



3 kelompok kerja




Jumlah rata-rata di dalam sistem (yang antri dan yang sedang dilayani)
1 kelompok kerja

 

2 kelompok kerja


 
3 kelompok kerja


Waktu rata-rata di dalam antrian
1 kelompok

 

2 kelompok



3 kelompok




Waktu rata-rata di dalam sistem
1 kelompok

 

2 kelompok



3 kelompok

 


Probabilitas fasilitas layanan sibuk atau faktor utilisasi fasilitas
1 kelompok


2 kelompok



3 kelompok

 


Perbandingan penggunaan 1, 2, dan 3 kelompok




Perbandingan Biaya Total Penggunaan 1, 2 dan 3 Kelompok

 



Dari perhitungan biaya total terlihat bahwa biaya total paling rendah jika perusahaan mempekerjakan 2 kelompok tenaga kerja. Dengan demikian disarankan agar perusahaan tersebut menambah satu kelompok tenaga kerja.

Nama : Raja Muda Gemasih
NPM  : 16216023
Kelas  : 2EA15

Referensi : 

 https://sites.google.com/site/operasiproduksi/teori-antrian
 https://sites.google.com/site/operasiproduksi/aplikasi-teori-antrian